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Abstract—WiFi devices operating in the 2.4 GHz ISM band
significantly suffer from the interference caused by overlapping
side-channels. This paper proposes a metric to quantify the
Quality of Experience (QoE) impact of side-channel interference
based on passive, granular wireless driver parameter samples
from consumer grade WiFi Access Points (APs). The variables
of the metric are BadPLCP, NoPkt, and Glitch which are driver
parameters determined in home environment experiments to be
highly correlated to interference. Filed analysis of the proposed
metric in 802.11ax and 802.11n deployments indicates that side-
channel interference prevents medium access and causes frame
losses, which are the main drivers of lowered QoE. Further, this
paper proposes a Deep Neural Network (DNN) based algorithm
to detect the interfering side-channel neighbour, where the
wireless driver parameters are the input features. For 6 classes
representing interference from different side-channels, we achieve
78% accuracy, 83% precision, 78% recall, and 79% f1-score.

Index Terms—WiFi, WLAN, interference

I. INTRODUCTION

Today, WiFi is one of the most prevalent technologies for
broadband Internet access in the home. WiFi performance
fluctuates quite often due to the varying and complex nature of
the wireless medium. For instance, medium access conditions
are affected by the location of WiFi APs and clients, WiFi con-
tention, and non-WiFi interference sources [1], [2]. Therefore,
quantifying WiFi performance and detecting WiFi problems
are challenging, especially for home networks, where WiFi
APs are randomly located.

Recently, the literature has focused on WiFi problem detec-
tion and performance estimation using continuously collected
wireless driver parameters at a fine scale from commodity
APs. In [3], the authors characterize the traffic activity and
analyze the occurrence of the coverage problem. WiFi and
non-WiFi (e.g., Microwave, Zigbee, etc.) interference sources
are classified with various machine learning algorithms in [4];
whereas five different WiFi problems such as WiFi contention,
non-WiFi interference, hidden terminal, capture effect, and
coverage are identified with Neural Networks (NNs) in [5].
WiFi link capacity [6] and QoE [7] are also estimated based
on passively collected wireless driver parameters.

None of the aforementioned works consider the WiFi in-
terference from overlapping side-channels in 2.4 GHz WiFi,
although it is a very significant problem. In the 2.4 GHz ISM
band, there are 13 WiFi channels with 22 MHz bandwidth,

among which only 3 channels, i.e., channels 1, 6, and 11, are
non-overlapping in frequency [8]. Data traffic through neigh-
bouring APs at overlapping side-channels cause interference
on each other. The new standard IEEE 802.11ax, branded as
WiFi6, with its faster data rates up to 9.6 Gbps, new medium
access techniques such as OFDMA and its deployments in
dense environments like stadiums, is even more prone to
such interference [9]. As WiFi6 is expected to replace older
standards such as 802.11n and 802.11ac in few years [10], the
side-channel interference problem gain more importance.

Currently, based on an analysis of one day worth of data
of 7084 Access Points (APs) of a Norwegian Internet Service
Provider (ISP), among which 21% have WiFi6 clients.1 %33
of these WiFi6 APs have neighbours at the overlapping side-
channels and they use the 2.4 GHz band for data traffic for
35% of the time rather than 5 GHz. As the 2.4 GHz band and
overlapping side-channels are preferred considerably in WiFi6,
the analysis of the side channel interference is significant.

Side channel neighbors are only studied based on active
WiFi scan results, which provide neighbour channel and
Received Signal Strength (RSSI) information for channel
selection mechanisms [11]. However, the scans are active
measures disturbing user experience when executed; and the
provided information by scans is not enough to quantify the
QoE impact of actively interfering neighbors.

This paper aims to quantify the performance degradation
caused by side-channel interference and to detect the neigh-
bouring APs causing the interference based on the wireless
driver parameters passively collected from consumer grade
APs. The major contributions of the paper are as follows:

• We conduct experiments in a home environment to ob-
serve the QoE impact of side-channel interference and
determine the wireless driver parameters indicating the
interference.

• We propose a metric to quantify the impact of side-
channel interference on WiFi QoE based on the exper-
iment results.

• We use the proposed metric for a field study in 802.11n
and 802.11ax deployments of the Norwegian ISP to
indicate that side-channel interference causes medium

1Anonymized data used in this study done so with permission from the
service provider, a Lifemote customer under a Data Processor Agreement.



access and frame delivery problems, which are the two
main reasons of WiFi QoE degradation [6].

• We propose a novel interfering side-channel neighbour
detector based on Deep Neural Networks (DNNs) for
which the features are extracted from the wireless driver
parameters.

This paper is organized as follows: Section II presents the
measurement setup, procedure, data, and results. Section III
introduces the metric to quantify side-channel interference
effect on QoE. Section IV presents the field study results and
compare the side-channel interference impact on 802.11ax and
802.11n APs. Section V proposes a DNN based architecture to
detect the interfering neighbour. Finally, Section VI concludes
the paper.

II. EXPERIMENTS

A. Experimental Setup

In this section, we describe the setup of our experiments
to observe the side-channel interference effects on WiFi QoE
and the wireless driver parameters indicating the interference.
We conducted experiments in a home environment with a
broadband xDSL downlink speed of 59Mbps. We used two
APs featuring the Broadcom BCM43217 2x2 802.11n chipset,
two Ubuntu laptops with 2x2 802.11n WiFi interfaces as
clients (one HP and one Dell) and an Apple Mac-mini desktop
PC as the automation controller of the measurements. The
setup is depicted in Fig. 1. The APs were connected to
the controller Mac-Mini via Ethernet, and the laptops were
connected to different APs as WiFi clients. One AP-client pair
was used only to utilize a specified channel and shall be named
the traffic pair. The other AP-client pair was used to conduct
the tests and shall be named the test pair.

B. Experimental Procedure

We collected wireless driver parameters and rates measured
by the Ookla Speedtestand [12] and Iperf [13] under different
side-channel interference conditions for several cases, where
physical locations of test and traffic pairs are changed.

Five different cases were created based on the locations of
the test and traffic pairs. We placed the test client at different
distances to the test AP to create high, medium, and poor
coverage conditions under side-channel interference. In the
first case, which could be thought as the reference case, both
pairs were positioned in the same room, where the clients
were closer to their corresponding APs than the other AP. For
cases 2 and 3, the APs and the traffic client were positioned
at the same place, but the test client was located in different
rooms corresponding to the medium and poor coverage points,
respectively. Moreover, APs were also located at different
distances between them to control the interference level. In
cases 4 and 5, the test pair was placed in its location in Case
1; while the traffic pair was moved to the next room and a room
farther away, respectively. The RSSI values between two APs
and between the test pair from the test AP’s perspective are
given in Table I.

Controller

Traffic	AP

Traffic	Client Test	Client

Test	AP

Fig. 1. Experimental setup

TABLE I
RSSI VALUES FOR DIFFERENT CASES

Case 1 Case 2 Case 3 Case 4 Case 5
AP - AP -40 dBm -40 dBm -40 dBm -60 dBm -70 dBm
Test pair -30 dBm -60 dBm -70 dBm -30 dBm -30 dBm

TABLE II
TESTS

Test side-
channel Util. Test side-

channel Util. Test side-
channel Util.

1 0 15% 7 2 15% 13 4 15%
2 0 50% 8 2 50% 14 4 50%
3 0 75% 9 2 75% 15 4 75%
4 1 15% 10 3 15% 16 5 15%
5 1 50% 11 3 50% 17 5 50%
6 1 75% 12 3 75% 18 5 75%

A single test consists of 10 Speedtests, and a single pair TCP
Iperf run of 60 seconds. Speedtests were conducted to measure
download and upload limits by using Python’s speedtest-cli
tool, which tests Internet bandwidth via speedtest.net. Then,
Iperf TCP traffic was generated from the controller to the
test client to test the Wireless Local Area Network (WLAN)
bandwidth. During each test, wireless driver parameters of
the test AP were sampled at 1 second intervals. We collected
wireless driver parameters with the “wl” application provided
by Broadcom.

A total of 18 tests were conducted for each of the five cases,
given in Table I, whose specifications are tabulated in Table
II. In each case, both pairs started at the same channel, which
was WiFi Channel 1. The test pair performed 3 tests; while the
traffic pair filled the air incrementally going through 15%, 50%
and 75% with Iperf UDP corresponding to the requirement of
each test. Then, the test pair moved to the next channel, i.e.,
WiFi Channel 2, and performed 3 more tests under 3 different
channel utilizations. This procedure was repeated by setting
the test pair’s channel to the next WiFi channel every 3 tests,
until reaching Channel 6. Note that, the traffic pair always
stayed at the WiFi Channel 1 and filled the air with UDP traffic
creating side-channel interference for the the traffic pair. The
side-channel causing interference is referred according to the
channel difference between the pairs, e.g., if the test pair is
on Channel 4 and the traffic pair on Channel 1, interference is
said to be caused by the 3rd side-channel, and 0th side-channel
if both pairs on Channel 1.
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Case 1
15% channel util.
50% channel util.
75% channel util.
Case 2
Case 3
Case 4
Case 5

0th side-channel
1st side-channel
2nd side-channel
3rd side-channel
4th side-channel
5th side-channel

Fig. 2. Average (a) Iperf Throughput, (b) Speedtest download rate, (c) CCA, (d) OBSS, (e) NoPkt, (f) Glitch (g) BadPLCP and (h) interf values for each test.

C. Experimental Data

Experiment data consist of Speedtest rates and Iperf TCP
logs from the test client, and wireless driver parameters of
the test AP. Especially, the parameters related to the channel
statistics of the AP are collected with the “wl chaim stats”
command. Note that due to the text length limitations, we
only present the driver parameters highly related to the side
channel interference, i.e., OBSS — percentage of time while
receiving packets from an overlapping basic service set, NoPkt
— percentage of time while receiving non-WiFi packets,
BadPLCP— counter for packets whose PLCP header cannot
be decoded, and Glitch — counter for noisy packets.

D. Experimental Results

Figs. 2a-2g present the measurement results as the mean
values of Iperf throughput, Speedtest download rates and
wireless driver parameters collected during each test. Each
sub-figure includes the mean values of the corresponding
parameter for 18 tests in all five cases given in Table I. In
each sub-figure, different background colors indicate different
side-channels that the test AP was operating on, leftmost pale
blue indicates the 0th side-channel and rightmost pale purple
indicates the 5th side-channel. Square, circle, and triangle
markers represent the 15%, 50% and 75% channel utilization,
respectively. Different lines indicate different test cases.



The Iperf and Speedtest download rates depicted in Figs. 2a
and 2b are used as indicators of user Quality of Experience
(QoE). In general, QoE is affected the most when the test
client is far away from but the traffic AP is close to the test
AP, i.e. Cases 2 and 3. The QoE degradation decreases as the
distance between the APs increases, as expected. Increasing
channel utilization results in lower rates, as expected. Even
if the APs are distant, i.e., Cases 4 and 5, 3rd side-channel
interference causes dramatic rate decreases so it has the worst
impact on QoE.

Fig. 2c depicts the mean CCA, i.e. Clear Channel As-
sessment, values during the tests. CCA is a commonly used
parameter to determine the channel availability. CCA clearly
decreases with the presence of 0th side channel interference.
However, it cannot sufficiently detect the effect of other side-
channels. This is our main motivation in proposing a new
metric for side-channel interference in Section III.

The mean values of OBSS, NoPkt, and Glitch for each test
are shown in Figs. 2d, 2e, and 2f, respectively. We observe
a great increase of OBSS when both pairs are operating on
the same channel. NoPkt, and Glitch highly increase under
3rd side-channel interference. Glitch has slight increases also
under 2nd side-channel interference.

Fig. 2g demonstrates the mean BadPLCP values in each
test case. BadPLCP increase dramatically under 1st and 2nd
side-channel interference among which the effect of 1st side-
channel is stronger than the 2nd. BadPLCP may also increase
slightly when there is interference from the 3rd side-channel.

III. INTERF METRIC

A. Formula

Based on the results explained in Section II-D, we propose
a new metric, interf, to quantify the effect of side-channel
interference on Wi-Fi QoE as follows:

interf =

⌊
B×Bw

Bth
+ G×Gw

Gth
+ N×Nw

Nth

Bw +Gw +Nw
∗ 100

⌉
(1)

where B, G and N denote the values of BadPLCP, Glitch
and NoPkt, respectively. Subscript th and w denote scaling
threshold and weight values, respectively, for corresponding
parameters and b.e denotes rounding the input to the nearest
integer. Eq. (1) is the weighted average of the scaled values
of BadPLCP, Glitch and NoPkt. We do not consider OBSS
as the 0th side-channel impact has already been considered
in CCA which is a commonly used metric for WiFi channel
availability.

We apply min-max scaling to the parameters, where the
minimum values of these parameters are 0. To determine the
maximums, we observe these parameters in the field with
over 1M samples collected in 1 min intervals from the APs
in the field. As the parameter mean values are significantly
lower compared to the maximums as seen in Table III, we use
the 95th percentile of the max values for scaling. This 95th
percentile coefficient is intended to discard outlier results in

TABLE III
POPULATION MEANS, MAXIMUMS, THRESHOLDS, FACTORS

Mean Max Threshold Weight
BPlcp 33 1845 130 3.66
NPkt 5 59 20 5.05
Glitch 1791 65006 4930 1.34

the normal distribution of samples. Note that the thresholds
are rounded up for simplicity.

The weights aim to quantify how much one unit increase
of the corresponding parameters impacts QoE. We applied
linear regression between the mean download rates and mean
parameter values of each test run, and used the resulting slope
as the weight of the parameter. The weight values are also
shown in Table III. Note that the threshold and weight values
are obtained for the AP model being used and may need to
be adjusted for the other AP models.

B. Evaluation

Fig. 2h depicts the average interf values for 18 consecutive
tests for all five cases. When compared with the mean Iperf
throughput and download rates in Figs. 2a and 2b, jumps in
interf value coincide with the decreases in the Iperf throughput
and download rates. In this sense, our proposed metric captures
the QoE impact of the side-channel interference.

We determine two thresholds to divide the [0,100] interf
range into three zones, namely high, mid and low interference
zones. These thresholds are adjusted so that the highest jumps
of mean interf in Fig. 2h lie in the high zone, and relatively
smaller jumps are in the mid zone. The thresholds, interf
values of 25 and 48, are depicted in Fig. 2h with dashed
black horizontal lines. A client having interf values greater
than 48 are in the range of high interference, which means
that there appears to be a severe interference problem and
visible QoE decrease. On the other hand, a client in the low
interference zone, whose interf is lower than 25, would not be
expected to have any visible QoE decrease due to side-channel
interference.

IV. FIELD STUDY

In this section, we present the results of the field study with
the Norwegian ISP regarding the side-channel interference
effect on 802.11ax and 802.11n deployments. For this study,
over 2M samples is collected from 1003 802.11ax and 966
802.11n APs in 1min interval during one day.

Fig. 3 shows the cumulative distribution function (CDF)
of interf values of the APs in the 802.11ax and 802.11n
deployments. Each line denotes the samples belonging to the
APs with at least one neighbor on the specified side-channel.
In both deployments, APs with neighbors on 1st and 3rd
side-channels, being in mid or high interference zones for
approximately 30% of the time, suffer most. 802.11n APs
with 4-th side-channel neighbours also experience high interf
values.

Fig. 4 demonstrates the relation between txop and interf
as a heatmap for 802.11ax and 802.11n APs. The txop
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Fig. 3. CDF of interf values for (a) 802.11ax APs and (b) 802.11n APs

parameter indicates transmit opportunity sensed by the APs.
For both type of APs, higher interf values correlate with
the lower transmit opportunity. This indicates that the side-
channel interference may limit medium access, as the chipset
carrier sensing mechanism marks the medium as unavailable
during times of high interference. 802.11n APs suffer from
this medium access issue more than 802.11ax APs since their
txop decreases to lower values compared to 802.11ax APs.

Fig. 5 depicts the mean RX PHY-rates of the samples
with the same RSSI for 802.11ax and 802.11n APs. The
samples in the high interference zone generally have lower
PHY-rates than samples in the mid and low zones at the same
RSSI. As WiFi PHY-rates are adaptively adjusted based on
the frame losses [14], we conclude that the APs decrease the
PHY-rates to cope with the frame losses caused by the side-
channel interference. Especially 802.11ax APs, whose mean
RX PHY-rates are almost two times higher than 802.11n APs,
experience a significant decrease in their PHY-rates.

V. INTERFERING NEIGHBOR DETECTION

In this section, we propose a DNN architecture to detect the
actively interfering side-channel neighbours.

We use a DNN with 3 hidden layers which consist of
32, 16, and 8 neurons, respectively. The input features are
OBSS, NoPkt, BadPLCP, Glitch, and interf. The 6 outputs
represent the classes of neighbours operating on 0th-4th side
channels or no interfering neighbour. All neuron weights are
initialized randomly from a Gaussian distribution with 0 mean
and 0.05 standard deviation. Standard scaling is applied on
input features. tanh and softmax activation functions are
preferred at the hidden and output layers, respectively. The
DNN is implemented in Python using Keras with Tensorflow
backend and trained with an Adam optimizer to minimize
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Fig. 4. TxOp vs.interf heatmap for (a) 802.11ax APs and (b) 802.11n APs
where the color bar indicates number of samples

categorical cross entropy loss. In the training, class weights
inversely proportional to the class sample sizes are used.
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802.11ax APs and (b) 802.11n APs .



TABLE IV
CONFUSION MATRIX ON THE TEST SET (%)

No 0th 1st 2nd 3rd 4th
No 97.26 2.25 0 0 0 0.48
0th 1.14 98.81 0 0 0.01 0.04
1st 0.32 18.46 51.76 0.89 0.19 27.38
2nd 1.82 0.93 0.30 92.27 0.62 4.06
3rd 2.63 0.10 0 0.38 88.31 8.59
4th 70.01 10.98 2.34 0.11 0.08 16.47

TABLE V
PRECISION, RECALL AND F1-SCORES ON THE TEST SET

precision recall f1-score support
accuracy 0.78 31432
macro avg 0.69 0.74 0.66 31432
weighted avg 0.83 0.78 0.79 31432

Note that 5th side-channel neighbours are not considered
since WiFi Channels 1 and 6, or Channels 6 and 11, are non-
overlapping in frequency and their impact on each other is
only observed when the APs are located in the same room,
which is not common in the field.

We consider training, validation, and test sets with 29724,
7431, and 31432 samples, respectively. The training and
validation sets are constructed by randomly dividing the data
samples collected in the experiments described in Section II.
The test set is created by another set of experiments with the
same AP but several different clients. For the test set, the
wireless driver parameters are again collected in 1s intervals
while either the positions of the AP and clients, the side-
channel generating the interference, or utilization of the side-
channel are changed every 30s.

The DNN performance is presented in Table IV, which
shows the confusion matrix, and in Table V, in terms of
precision, recall and f1-scores of all classes. The classification
results with 78% accuracy, 83% precision, 78% recall, and
79% f1-score. The main reason decreasing the performance
is 4th side-channel neighbours who confused with no inter-
ference case. This confusion is expected since the wifi driver
parameters of both classes are similar, as seen in measurement
results in Section II-D. Similar to the no interference case,
neighbours at the 4th side-channel do not have negative effect
on QoE, except when the APs are located in the same room,
which is not common in the field. Hence, not being able to
detect 4th side-channel neighbours will not have significant
consequences for real life applications.

VI. CONCLUSION

This paper aims to quantify QoE degradation caused by
2.4 GHz WiFi side-channel interference, and detect the inter-
fering neighbour based on passively sampled wireless driver
parameters of consumer grade APs. First, experiments are
conducted in a home environment, whose results indicate that
OBSS, BadPLCP, NoPkt and Glitch are the driver parameters
which signify interference from different side-channels. Based

on these parameters, we propose a metric, interf, which quan-
tifies side-channel interference impact on QoE. Observation
of interf values in the field shows that side-channel interfer-
ence prevents medium access and causes frame losses, which
are the main drivers of lowered QoE. Under side-channel
interference, APs in 802.11n deployments suffer medium
unavailability more than ones in 802.11ax deployments. PHY-
rates of 802.11ax APs, on the other hand, are affected by the
interference conditions more than PHY-rates of 802.11n APs
.

Further, a DNN-based algorithm to detect actively inter-
fering neighbors, where the driver parameters are inputs and
the side-channel causing the interference is the output, is
proposed. Our proposed algorithm reaches 78%, 83%, 78%,
and 79% accuracy, precision, recall and f1-score, respectively.
As future work, we aim to extend this DNN-based algorithm
to provide a channel selection mechanism.
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